




function of Osa during development, we looked for genetic
interactions in the wing imaginal disc, a tissue that has been
shown to require osa (7) (Fig. 7B to E). In osa308/osa4H mutant
wing discs, ectopic expression of the Wingless target gene nub-
bin (nub) (23) was observed in the notum, as previously de-
scribed (7), but the endogenous domain of Nub expression in
the wing pouch was only mildly affected (Fig. 7C). Expression
of Senseless (Sens), a marker for sensory organ precursors at

the wing margin (25) was weak but still present in these osa
mutants (Fig. 7C). Since no cul-2 mutants have been reported,
we used RNA interference to reduce the function of the gene.
Expression of a transgenic UAS-cul-2RNAi line in the dorsal
compartment of the wing disc with the apterous (ap)-GAL4
driver produced a mild distortion of Nub expression and a
slight reduction in Sens expression (Fig. 7D). However, ex-
pressing cul-2RNAi in the osa mutant background completely

FIG. 7. Analysis of Drosophila Osa mutants. (A) Osa mutant larvae have decreased levels of H2B-Ub. Acid extracts made from the hypomor-
phic allelic combination osa308/osa4H (�/�), osa308/�, or osa4H/� (�/�) larvae were immunoblotted with an antibody to H2B. Increasing amounts
(1� to 4�) of acid extracts from (�/�) or (�/�) larvae were loaded in lanes 1 to 4 and 5 to 8, respectively. The upper and lower panels are from
the same gel. The blot was separated for probing because of the difference in signal intensity between H2B-Ub and H2B. (B to E) Third-instar
wing imaginal discs oriented with dorsal up and posterior to the right were stained with anti-Nub (green) and anti-Sens (magenta) antibodies.
(B) Wild type; (C) osa308/osa4H; (D) ap-GAL4/�, UAS-cul-2RNAi/�; (E) ap-GAL4/�; osa308, UAS-cul-2RNAi/osa4H. Reduction of either osa or
cul-2 function causes slight abnormalities in Nub expression throughout the wing pouch and Sens expression at the wing margin, but when both
are reduced simultaneously, Sens expression is completely absent and the Nub expression domain is distorted.
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abolished Sens expression and dramatically disrupted Nub ex-
pression (Fig. 7E). The synergistic effects of reducing osa and
cul2 function suggest that the two proteins act together in vivo.

DISCUSSION

In this study, we have shown that BAF250b interacts with
Elo C and Cul2. The interaction with Elo C and Cul2 is de-
pendent on a BC box in the CTD of BAF250b, whereas the
Cul2 interaction requires both ARID and the BC box. In vivo,
the single amino acid substitution in the BC box (BC*) resulted
in the degradation of the BC box mutant BAF250b through
autoubiquitination. The Cul2-dependent regulation of BC*
supports the idea that BAF250b serves as an E3 ubiquitin
ligase substrate recognition module in vivo. We have deter-
mined histone H2B to be a substrate for the BAF250 complex
in a nucleosomal context. We propose that this complex is
assembled in a manner similar to that for the well-character-
ized VHL complex, which targets HIF1� (Fig. 8). We previ-
ously reported that the ARID and the CTD of BAF250 are
important for transcriptional activation (12). BAF250CTD was
also shown to interact with the glucocorticoid receptor to ac-
tivate transcription (12, 24, 34). It is possible that the coacti-
vator function of BAF250 is in part mediated through its as-
sociation with Elo C and Cul2.

Until now, all H2B-Ub was thought to arise from the action
of the heterodimeric RNF20/40 E3 ubiquitin ligase, although it
has been noted that depletion of RNF20 by RNAi affected
transcription of only a subset of genes (31). H2B-Ub has been
shown to be required for transcriptional activation in vitro (26)
and associates with transcriptionally active genes in vivo (8, 20).
RNF20 is sufficient for ubiquitin ligase activity in vitro and
shares approximately 30% homology with S. cerevisiae Bre1,
which performs the analogous function in yeast (43). Interest-
ingly, the yeast BAF250 ortholog Swi1 lacks an identifiable BC
box necessary for interaction with Elo B/C. The Elo B/C in-
teraction domain and the Swi1 ARID are also not highly con-
served (38). Swi1 has not been identified in genetic screens for
factors affecting H2B monoubiquitination (11), and multiple
groups have reported on the elimination of H2B-Ub upon
deletion of bre1 in yeast. Thus, the probability of Swi1 possess-
ing E3 ubiquitin ligase activity seems low. Because yeast is a
unicellular organism, the layers of epigenetic regulation nec-
essary in mammals would not be required. The BAF250 E3
ubiquitin ligase activity therefore may reflect an evolutionary

adaptation unique to the demands of developmental regula-
tion in multicellular organisms.

The BAF250-Elo B/C-Cul2-Roc1 complex would also be
regulated by assembly and neddylation of the cullin subunit,
whereas RNF20/RNF40 is presumably constitutively active
(43). Dynamic regulation of the BAF250 E3 ubiquitin ligase
assembly and activity by neddylation, the COP9 signalosome,
and TIP120A/CAND1 complexes would allow the type of tem-
poral regulation necessary in early development. Recent stud-
ies of developing cells have demonstrated that temporal regu-
lation of different transcription factor complexes is important
to cell fate decisions (9).

Both BAF250a and BAF250b are expressed in mammalian
embryonic stem cells. Chromatin immunoprecipitation studies
suggest that Nanog, Oct4, and Sox2 occupy the BAF250b pro-
moter, while E2F4 occupies the BAF250a promoter (3). The
dependence of mammalian embryonic stem cells on BAF250a
and -b argues that these are genuine trxG members. Although
trxG and PcG proteins have antagonistic roles in controlling
HOX gene expression, many of the trxG and PcG proteins
studied have chromatin-remodeling and chromatin-modifying
capabilities. Posttranslational modifications of histones, such
as H3 lysine-4 trimethylation (H3K4me3) and H2B monoubiq-
uitination (H2B-Ub), show a positive correlation with tran-
scription activation. H2B-Ub is required for transcription from
a chromatinized template in vitro (26) and regulates H3K4me3
levels in vivo (30, 33). In contrast, H2A monoubiquitination is
considered a transcriptionally repressive mark set by Ring1a/b,
part of Polycomb repressor complex 1 (5). In accordance with
Osa’s antagonistic role in regard to Ring1a/b in HOX gene
regulation, we show that BAF250a is a positive regulator of
HoxA9 and that the BAF250b complex is specific for histone
H2B in a nucleosomal context. Indeed, in vitro ubiquitination
assays and in vivo knockdown experiments indicate that H2B is
a target of the BAF250 E3 ubiquitin ligase. BAF250 is not
essential to SWI/SNF targeting in vivo or to chromatin remod-
eling in vitro (6, 27). Thus, we do not think that BAF250 siRNA
knockdown has disrupted SWI/SNF remodeling activity in gen-
eral. Furthermore, Osa and Cul2 synergistically interact in
genetic analysis carried out with the Drosophila wing discs,
confirming the importance of association with Cul2 to the
function of Osa in vivo. The discovery that BAF250 associates
with Elo B/C, Cul2, and Roc1 to form an E3 ubiquitin ligase
that specifically monoubiquitinates histone H2B in a nucleo-

FIG. 8. A model of the BAF250-containing E3 ubiquitin ligase. (A) VHL is a substrate adapter associated with the Elo B/C-Cul2-Roc1
complex, which ubiquitinates HIF1�. (B) BAF250 forms an E3 ubiquitin ligase with Elo B/C, Cul2, and Roc1 that targets histone H2B.
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somal context provides a mechanistic explanation for Osa’s
classification as a trxG member.

The identification of a novel ubiquitination pathway medi-
ated by the chromatin-remodeling complex SWI/SNF-A raises
several important questions. Is the H2B-Ub mark set before or
after remodeling? Does H2B-Ub affect chromatin remodeling?
Is the H2B ubiquitination mediated by BAF250 gene specific?
If so, what distinguishes such genes from those targeted by the
E3 ligase RNF20/40? Genome-wide analysis of the occupancy
of BAF250, RNF20/40, and H2B-Ub will help to identify genes
targeted by the ubiquitin ligase activity of BAF250, which
would facilitate future biochemical studies.
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